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New evidence for ‘confined coherence’ in weakly coupled
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Abstract. On the basis of a calculation of the exact inter-liquid hopping rate and an
approximate single-particle Green’s function, we present new evidence for the existence of
a phase ofrelevant but incoherentinter-Luttinger-liquid transport. This phase of ‘confined
coherence’ occurs when the Luttinger liquid exponentα satisfiesαc < α < 1/2. We argue
that αc is strictly bounded above by 1/4, and is probably substantially smaller, especially in
spin-charge-separated Luttinger liquids. We also discuss connections with the work of others.

1. Introduction

The physics of a strongly correlated, highly anisotropic electron system represents a subtle
problem in many-body physics. In previous work [1, 2] we have considered the problem
of one-dimensional (1D) electron liquids coupled by weak inter-liquid hopping. Implicit
in our approach is the recognition that if one begins with a collection of truly 1D metals
and then turns on weak inter-liquid hopping, it is nota priori appropriate to consider the
electron–electron interaction as a perturbation on an anisotropic (2D) free Fermi gas. Rather,
one should consider theinter-liquid hoppingas a perturbation on the (otherwise decoupled)
1D liquids. The problem is non-trivial but tractable to some degree, because the low-
energy physics of a 1D metal is described by Luttinger liquid theory. Unlike in a Fermi
liquid, where the electron spectral function,ρ(k, ω) is dominated by a quasiparticle part,
which sharpens up to aδ-function ask → kF , in a Luttinger liquid there are no Landau
quasiparticles; rather,ρ(k, ω) exhibits only power-law singularities. For this reason, and
others that we have previously discussed [1, 2], the problem of weakly coupled Luttinger
liquids is closely analogous to that of weak tunnelling in a two-level system (TLS) coupled
to an ohmic dissipative bath [3]. Exploiting this analogy led us to propose [1, 2] that inter-
liquid hopping between non-Fermi liquids may have three qualitatively distinct regimes: it
may be irrelevant, relevant and coherent, or relevant but entirely incoherent. The incoherent
inter-liquid hopping phase would represent a new state of matter with intrinsically incoherent
transport in at least one direction. There is substantial experimental support for this proposal
based on its ability to explain certain anomalous properties of the low-dimensional organic
conductor (TMTSF)2PF6, as has been discussed elsewhere [4–6]. In this paper we briefly
report new results which address this question based upon the use of exact Luttinger liquid
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spectral functions, careful consideration of the analytic properties of Luttinger liquid Green’s
functions, and a reinterpretation of a calculation made by others [7].

2. The inter-liquid hopping rate for weakly coupled Luttinger liquids

We are interested in the problem ofN coupled Luttinger liquids,N → ∞. At O(t2⊥),
however, our results are equivalent to those forN = 2, and we therefore consider the
problem of two Luttinger liquids coupled by a spatially uniform, single-particle hopping
(as in [1]). Our calculation is dynamical and involves taking at = 0 state with1N more
(right-moving) particles in liquid 2 than in liquid 1 and no Tomonaga bosons excited in
either, then turning ont⊥ and examining the time dependence of1N (for the motivation
see [1] and [3]). The particle number difference1N entails a Fermi momentum difference
1k and a chemical potential difference1µ ≡ v 1k. Unlike in our earlier work [1] based
upon space-time Green’s functions, we use spectral function methods here, which is both
physically more illuminating and permits the calculation of key correlation functionsexactly.

At O(t2⊥) the inter-liquid hopping rate0(t) can be written in a spectral function form
as

0(t) = 2t2⊥L
∫

dω

2π

sinωt

ω
{A12(ω)+ A21(ω)} (1)

where

Aij (ω) =
∫

dω′

2π

∫
dk

2π
J (i)1 (k, ω′)J (j)2 (k, ω′ − ω) (2)

and the spectral functionsJ1,2(k, ω) are the Fourier transforms of

J1(k, t) ≡ 〈c1(k, t)c
†
1(k, 0)〉 and J2(k, t) ≡ 〈c†2(k, 0)c2(k, t)〉.

In this paper we consider only the zero-temperature limit, in which case

J1,2(k, ω
′) = θ±(ω′ − µ)ρ1,2(k, ω

′ − µ)
whereρ(k, ω) is the electron spectral function as conventionally defined. We remark that
equations (1) and (2) are not specific to coupled 1D liquids: they may be extended to the
case of coupled 2D liquids by replacingk by k in the k-integrals and in the definitions of
J1 andJ2.

Physically,A12(ω) is the effective inter-liquid hopping spectral function for an electron
hoppingto liquid 1, from liquid 2, andA21(ω) that for the opposite case. AsA21(ω) never
has a coherent component, it suffices, for the purposes of studying the question of coherence,
to consider justA12(ω).

Before presenting the calculation of0(t) for coupled Luttinger liquids, we first show
how the coherence of inter-liquid hopping manifests itself in the case of coupled (Landau)
Fermi liquids.

2.1. Free Fermi gases, and Fermi liquids

For free Fermi gases,A12(ω) ∝ 1µδ(ω) andA21(ω) = 0. Thus0(t) ∝ 1µ t , a clear
signal of coherent hopping and hence of a fundamental rearrangement of the ground state.

In a Fermi liquid the (retarded) Green’s function isG−1
R (k, ω) = Z−1(ω − Ek)+ iγω2

where Z is the quasiparticle renormalization factor, andγ is a (positive) parameter
characterizing the strength of the electron–electron interactions. The spectral function is
then given byρ(k, ω) = −2 ImGR(k, ω), from which we obtain

A12(ω) ∼ v−1
F {Z21µδ(ω)+ (3π)−1Z3γω} θ+(ω +1µ). (3)
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We find that012(t) is a sum of a term∝Z21µ t representing fundamentally coherent
processes, and a term∝γZ3t−1 which is marginal. By choosing a sufficiently smallt⊥ one
can find a timet such that, while remaining in the perturbative regime,N−1

∫ t
0 0(t

′) dt ′ � 1,
the ratio of the coherent contribution to the marginal contribution is arbitrarily large. This is
true regardless of how smallZ is. Thus, a perturbative calculation int⊥ does not reveal any
likelihood of a loss of coherence of inter-liquid tunnelling, and there is no impediment to
the formation of an inter-liquid band of width∼Zt⊥. This is consistent with what we would
expect from a calculation based upon (Landau) quasiparticles. Formally, the coherence is
reflected in the fact that the spectral functionA12(ω) is dominated by theδ-function at
ω = 0, indicating that the hopping is almost entirely energy degenerate.

2.2. Luttinger liquids

We now turn to the problem of coupled Luttinger liquids, considering the case of spin-
independent electronic interactions, characterized by the anomalous exponent, 2α, of the
single-particle Green’s function, and charge and spin velocitiesvc andvs . The calculation
of A12(ω) andA21(ω) is lengthy, and we present only the final results here. Complete
details are given in [6]. Theexactresult is

A12(ω) = Alow
12 (ω) θ+[ω − (vs − v)1k] θ+[(vc − v)1k − ω]

+ Ahigh
12 (ω) θ+[ω − (vc − v)1k]

Alow
12 (ω) =

1

0(1+ 4α)

1

1v

(
a2

v̄ 1v

)2α

(ω + (v − vs)1k)4α

A
high
12 (ω) =

1

(1+ 2α)

1

0(2α)0(1+ 2α)

1

v̄

(
a

2vc

)4α

× (ω + (vc + v)1k)2α+1(ω − (vc − v)1k)2α−1

× 2F1

(
1, 1− 2α; 2+ 2α;−

(
1v

v̄

)[
ω + (vc + v)1k
ω − (vc − v)1k

])
(4)

where 2F1 is the hypergeometric function,a a short-distance cut-off, and̄v ≡ vc + vs ,
1v ≡ vc − vs [8]. The typical morphology ofA12(ω) is shown in figure 1. We observe
that A12(ω) is both non-singular and of wide support, having non-zero weight from just
belowω = 0 all the way up to the ultraviolet cut-off. Asα→ 0, we haveA12(ω)→ δ(ω),
and one needs to use degenerate perturbation theory to treat the inter-liquid hopping. For
α > 1/2, t⊥ is a formally irrelevant operator, which is reflected in the fact that the spectral
weight in A12(ω) is pushed to high energies. Forα < 1/2, but not too small,A12(ω) is
generically ‘flat’ suggesting that much, if not most, of the hopping occurs via non-degenerate
(i.e. ‘inelastic’) processes. This is reminiscent of situations in more elementary quantum
mechanical problems where Fermi’s ‘Golden Rule’ is applied, and clearly raises doubts over
any claim that the action oft⊥ is to drive the system to a fixed point in which inter-liquid
hopping is coherent.

For simplicity, we shall restrict our discussion from here on to the spinless case, which
can be obtained by formally taking1v → 0. The general case will be discussed else-
where [6].

In calculating012(t) it is simplest to consider its time derivative. We find

d012(t)

dt
= t2⊥L

π

1

0(2α)0(2+ 2α)

(
a

2vc

)4α 1

2vc

1

0(1− 2α)
t−(1+4α)
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× Re{ei(vc−v)1k t [iei 2πα0(1− 2α)0(1+ 4α) 1F1(−1− 2α,−4α;−ix)

+ 1

2

(1+ 2α)

(1+ 4α)
0(2α)0(1− 4α) x1+4α

1F1(2α, 2+ 4α;−ix)]} (5)

where 1F1 is the confluent hypergeometric function and, for convenience, we have
introduced the variablex = 2vc 1k t .

!l !i !u
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!
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I

)

+
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Figure 1. The inter-liquid hopping spectral function for various values ofα. Here ωl =
(vs − v)1k, ωi = (vc − v)1k, andωu is the ultraviolet cut-off of orderv/a. The plots do
not include the weak-power-law cut-off-dependent prefactors. The vertical arrow is theα = 0
spectral function,A12(ω) ∝ δ(ω).

Equation (5) is anexactresult for the (time derivative of the) inter-liquid hopping rate,
to lowest order int⊥. We use the expansion

1F1(a, b; z) = 1+ ab−1z + ab−1(a + 1)(b + 1)−1z2/2+ · · ·
and, noting that it makes little physical sense to suppose that terms O(x2) or higher (i.e. terms
of O(1k2) or higher) are important in determining the coherence or incoherence ofsingle-
particle hopping, we retain only the O(x0), O(x) and O(x1+4α) terms. This gives

d012(t)

dt
= t2⊥L

π

1

0(2α)0(2+ 2α)

(
a

2vc

)4α 1

2vc
cos[(vc − v)1k t ] t−(1+4α)

×
{
(1+ 2α)

{
− sin(2πα)

0(1+ 4α)

(1+ 2α)
+ cos(2πα)0(4α)x

+ 0(2α)0(1− 4α)

2(1+ 4α)0(1− 2α)
x1+4α

}
− tan[(vc − v)1k t ] cos(2πα)0(1+ 4α)

}
.

(6)

The latter two terms continuously develop into the correct, coherent result for free fermions
as α → 0, and their modification from the Fermi liquid result is closely analogous to
the behaviour of the appropriate terms in the derivative of the TLS transition rate upon
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turning on coupling to an ohmic bath. In the other well understood limit,α > 1/2, the
entire expression leads to a finite integrated transition probability,P(t) = ∫ t

0 dt ′ 0(t ′),
in agreement with the known irrelevance oft⊥ in that limit. In between, the1k-
independent term givesP(t) ∝ t1−4α, which is long-time convergent and therefore irrelevant
if α > 1/4, but represents fundamentally incoherent inter-liquid hops if 0< α < 1/4. The
O(1k1+4α) term requires care to interpret whenα 6= 0, but we note that the oscillatory
prefactor cos[(vc − v)1k t ] will force 012(t) to be essentially time independent for times
t & [(vc − v)1k]−1. This effect is analogous to that of non-degeneracy in the TLS [3]
where it has been argued to dramatically decrease coherence. In order for lowest-order
hopping to be coherent, one must keep to times short enough to avoid the cut-off effect of
this prefactor, and the maximum possible1k for a given timet is 1kmax∼ [(vc − v)t ]−1.
The O(1k1+4α) term in d0/dt is therefore bounded by∼1k t−4α/(vc − v)4α which has the
same form as the term linear in1k, and we therefore consider only the latter term.

If the term linear in1k decays slower thant−1, it should be interpreted as a potentially
coherent term. Forα > 1/4 it falls off faster thant−1, and at O(t2⊥) the inter-liquid single-
particle hopping is completely incoherent, signalled by the convergence of0(t → ∞).
This is despite the relevance oft⊥ in the RG sense forα < 1/2. We therefore expect an
incoherent inter-liquid hopping phase for 1/4 < α < 1/2. There are, however, additional
factors enhancing incoherence over and above the time exponent of the O(1k) term.

First, there is the ‘dephasing’ prefactor cos[(vc − v)1k t ], analogous to a bias term in
a TLS. According to the results from that problem [3], this should enhance incoherence.
Further, there are the incoherent processes contributing to the1k-independent term. For
0 < α < 1/4 the inter-liquid hopping rate and the integrated transition probability,P ,
are essentially sums of incoherent and coherent parts, defined by their respective time
behaviours. Due to the presence of the dephasing term, the coherent term remains so
only for times t . [(vc − v)1k]−1. As such,P coh

12 (t) is bounded above in magnitude by
∼ t2⊥vc34αt1−4α/(vc − v), so

P incoh
12 (t)

P coh
12 (t)

& α (vc − v)
vc

.

This is independentof t⊥, and the purely incoherent channel cannot be eliminated in the
t⊥ → 0 limit, as it can in a Fermi liquid. As a result, we are forced to consider the
influence of inter-liquid hops upon one another via correlations not automatically included
in our O(t2⊥) calculation. To begin with, inter-liquid hops through the coherent channel will
be interrupted by the finite probability of a hop through the incoherent channel. Secondly,
intra-liquid interactions will lead to scattering of coherent hops by incoherent hops. In the
limit t⊥ → 0, the incoherent hops have an arbitrarily long time to scatter the coherent hops
(although their density also vanishes in this limit), and we find that the effect of a given
incoherent hop on the coherent hops grows at least linearly in time. If it grows faster than
linearly, the scattering will be divergent, and hopping should be incoherent ast⊥ → 0 for
anyα.

Combining all of these effects, we expect that as we decreaseα from 1/4, incoherence
will be stabilized down to some critical valueαc < 1/4 by a combination of the purely
incoherent term, the dephasing prefactor which kills coherence if1k t is too large, and, in
the case of fermions with spin, spin–charge separation, which further suppresses coherence
for finite 1k t [6]. We again emphasize the utility of the spectral functionA12(ω) in
indicating the coherent or incoherent nature of the inter-liquid hopping.
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3. The approximate single-particle Green’s function: calculation and interpretation

We now consider how these same effects might appear in the more conventional calculation
of the Green’s function forN → ∞ coupled Luttinger liquids of spinless fermions. We
will neglect vertex corrections associated witht⊥ and incorporatet⊥(k⊥) as an energy-
independent self-energy. We are motivated by similar calculations by others [9]; however,
we focus on analytic properties of the Green’s function not previously treated. Using
G−1 = G−1

0 −6, G0(k, ω) = (v2k2− ω2)α(ω − vk)−1, gives

G(k, k⊥, ω) = (v2k2− ω2)α

(ω − vk)− t⊥(k⊥)(v2k2− ω2)α
(7)

where we have set the dimensionful high-energy cut-off to 1, andk is momentum along
the chains measured from the Fermi surface. Equation (7) must be supplemented by a
discussion of the analytic properties ofG andG0, in which we consider only positivek
since the case of negativek is essentially identical fort⊥(k⊥)→−t⊥(k⊥).

First, recall that the singularities of the Green’s function, particularly poles, only have
sensible physical interpretations in the second and fourth quadrants of the complexω-plane.
For k 6= 0,G0 has two branch-cut singularities, one for each sign ofω, which must originate
in the second and fourth quadrants. Also,G0 must be real for−vk < ω < vk since in that
region no on-shell decay of an injected fermion is possible. This implies that the phase of
G0 for ω > vk should be given by−απ , and by−π − απ for ω < −vk. Now consider
the pole equation,G−1

0 (k, ω) = t⊥(k⊥), for k = 0 andt⊥(k⊥) > 0. Forα = 0, the pole in
the complexω-plane is att⊥(k⊥) and, as we turn onα, it shifts into the fourth quadrant.
Moving off the axis into the fourth quadrant, an angle2 changes the phase ofG−1

0 (0, ω)
to απ − (1− 2α)2, and it is again possible to have a pole if

2 = απ/(1− 2α). (8)

For smallα, this pole could be sensibly interpreted as a weakly damped quasiparticle pole,
as in a usual Fermi liquid. However, forα > 1/4, 2 > π/2, the pole enters the fourth
quadrant, and the solution has no sensible interpretation as a quasiparticle pole (it would
imply an unoccupied, negative-energy quasiparticle state). The last physical solution, which
occurred forα = 1/4, corresponds to a purely imaginary frequency, entirely in keeping
with the idea thatt⊥ is acting incoherently at this value ofα. For a negativet⊥, an exactly
parallel scenario involving the second, instead of the fourth quadrant, results. In both cases,
for α > 1/4, there is no physically sensible pole resulting from incorporation oft⊥ as a
self-energy, and the results are extremely suggestive of incoherence.

The effect is very closely analogous to the behaviour of the Laplace transform ofP(t)

found in [3] at the onset of incoherence. A similar analogy between the locations of the
poles of the single-particle Green’s function approximated in this way and the Laplace
transform ofP(t) in the TLS problem was noted in [10].

We now considerk 6= 0. Consider first the case wheret⊥ > 0. As we move some
distance away from the Fermi surface, the singularity at−vk becomes more distant and
its effect on the phase less important. Fork1−2α � t⊥, it becomes possible to circle the
singularity atvk without moving appreciably with respect to the singularity at−vk, and
the phase ofG−1

0 (k, ω) close toω = vk varies asαπ − (1− α)2 where2 is measured
downward from the realω > vk half-line. As before, at smallα the pole has a small
imaginary part to its frequency, and it can be sensibly interpreted as a weakly damped
quasiparticle pole. However, nowα can be as large as 1/2 before the pole is forced into
an unphysical region. Note, however, that forα > 1/3, 2 > π/2, so the addition of a
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positive, real self-energy (t⊥) shifts the singularity atvk to a complex energy with a real
part less thanvk. Including spin–charge separation is more complicated, and we state only
two of our results forvc > vs : (1) for α > 1/6, the pole lies at an energy whose real part
is shifted to belowvck; and (2) forα > 1/4, and largek, the pole equation again cannot
be satisfied for a physically sensibleω.

Returning to the spinless case, let us follow the pole fort⊥ < 0 as we increase
k. For α < 1/4 this pole lies in the second quadrant, and increasingk eventually
pushes it to the imaginary axis. Whenk = kc = v−1t

1/(1−2α)
⊥ cos(2πα), the pole reaches

ω = ωc = ivkc tan(2πα). Again, the last frequency with a possible physical interpretation
is purely imaginary, paralleling what occurred fork = 0 andα = 1/4.

In addition to this pole, a new pole appears, for negativet⊥(k⊥) and k > 0, at
ω ∈ (−vk, vk) given by the real solution of(vk − ω)1−α(vk + ω)−α = |t⊥(k⊥)|. This
undamped pole is unphysical, however, in a number of ways. Firstly,G is purely real at
the position of the pole only because there is nothing for a fermion at this momentum and
energy to decay into in the unperturbed model. It is easy to see, however, that if the pole
existed fork close to 0, then there would be accessible decay channels. These are neglected
by the omission of vertex corrections. Secondly, for|t⊥(k⊥)| > 2vk, this pole approaches
not vk − t⊥ but−vk (with rapidly vanishing weight) asα→ 0. Finally, in a spin–charge-
separated Luttinger liquid, and at sufficiently largek, this pole ceases to exist ifα > 1/4,
while for α < 1/4 the pole lies just belowvsk. In a model withα < 1/4 and vanishing spin
velocity, e.g. the large-U Hubbard model, the pole is completely dispersionless along the
chains. The ‘quasiparticles’ defined by it have the strange property of a vanishing bandwidth
in the direction of large hopping, but a finite bandwidth in the direction of small hopping!

We therefore see that, forα > 1/4 and when analytic properties are treated carefully,
this approximate calculation ofG gives no indication of the existence of a transversely
dispersing quasiparticle. This is in contrast to what has been suggested elsewhere [9]. In
fact, if the poles found off the real axis are interpreted as quasiparticle poles and the Fermi
surface is identified with the momenta at which the real part of their frequencies cross zero
energy, then the conclusion within this approximation is that the Fermi surface warping
vanishes completely forα = 1/4.

4. Another diagrammatic calculation: Fermi surface warping

Finally, we briefly discuss another diagrammatic calculation addressing coupled Luttinger
liquids. For the case of infinitely many coupled chains, the behaviour ofn(kx, ky) has been
studied in lowest-order perturbation theory int⊥ by Castellaniet al [7]. They find a shift of
n(kx, ky) proportional to cos(ky)|kFx −kx |−1+4α and interpret this as signalling the instability
of the Luttinger liquid. Thek-behaviour arises from an integral given in our language by

〈δn(kx, ky)〉 ∝ cos(ky)
∫

dω

2π

A1N=0(kx, ω)

ω
(9)

which is infrared convergent everywherefor α > 1/4.
We have previously argued [1] that the magnitude of the warping of the Fermi surface

should be identified with the oscillation frequency of our dynamical calculation, and provides
the order parameter for the transition between the phase with ‘confined coherence’ and the
usual phase with coherent transport in all directions. When interpreted in this context, the
finding of Castellaniet al [7], that within perturbation theory the shift in the Fermi occupation
function undergoes a qualitative change to convergent behaviour when the hopping is still
relevant, supports the notion of incoherence directly.
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5. Conclusion

We have calculated exactly the inter-Luttinger-liquid hopping rate to O(t2⊥). Of great
physical relevance is the effective spectral function for inter-liquid hopping,A12(ω). We
have shown that in a large region of Luttinger liquid parameter space belowα = 1/2 (the
point wheret⊥ becomes a marginal operator),A12(ω) is too broad a function to sustain
coherent inter-liquid transport. Single-particle coherence is confined to the one-dimensional
chains, in the sense that it is impossible to observe any effects of interference (beyond those
observable for completely decoupled chains) between histories which involve inter-liquid
hopping. Again, we emphasize that this isnot the result of an irrelevantt⊥: the coherence
is confined, but theelectronsare not.

Our proposal is supported by a careful consideration of the analytic properties of
approximate single-particle Green’s functions. Even though such approximations are
uncontrolled, we find no evidence in these calculations to suggest anything other than
that there can exist a phase of relevant, but incoherent, inter-liquid transport. In fact, all of
the results presented here indicate that motion of fermions transverse to the chains can be
very different for differentα (while still in the region of relevantt⊥), and support the idea
that the nature of the renormalization group instability of thet⊥ = 0 fixed point can also
change. This gives further evidence for the existence of a novel fixed point (one of ‘confined
coherence’) in which transport in one or more (but not all) directions isintrinsically (i.e.,
in a pure system at zero temperature) incoherent.
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